Witten Genus and String Complete Intersections

نویسندگان

  • QINGTAO CHEN
  • FEI HAN
چکیده

Let M be a 4k-dimensional closed oriented smooth manifold. Let E be a complex vector bundle over M . For any complex number t , set 3t(E)= C | M + t E + t232(E)+ · · · , St(E)= C | M + t E + t2S2(E)+ · · · , where for any integer j ≥ 1, 3 j (E) is the j-th exterior power of E and S j (E) is the j-th symmetric power of E ; see [Atiyah 1967]. Set Ẽ = E −Crk(E). Let q = e iτ with τ ∈ H, the upper half plane. Witten [1988] defined 2q(E)= ⊗

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intersections of Tautological Classes on Blowups of Moduli Spaces of Genus-One Curves

We give two recursions for computing top intersections of tautological classes on blowups of moduli spaces of genus-one curves. One of these recursions is analogous to the well-known string equation. As shown in previous papers, these numbers are useful for computing genusone enumerative invariants of projective spaces and Gromov-Witten invariants of complete intersections.

متن کامل

Witten genus and vanishing results on complete intersections

Article history: Received 14 September 2009 Accepted after revision 3 February 2010 Available online 19 February 2010 Presented by Jean-Michel Bismut We construct a mod 2 analogue of the Witten genus for 8k+2 dimensional spin manifolds, as well as modular characteristic numbers for a class of spin manifolds which we call string manifolds. When these spin manifolds are actually spin, one recover...

متن کامل

The Genus One Gromov-Witten Invariants of Calabi-Yau Complete Intersections

We obtain mirror formulas for the genus 1 Gromov-Witten invariants of projective Calabi-Yau complete intersections. We follow the approach previously used for projective hypersurfaces by extending the scope of its algebraic results; there is little change in the geometric aspects. As an application, we check the genus 1 BPS integrality predictions in low degrees for all projective complete inte...

متن کامل

Elliptic Genera and Stringy Complete Intersections

In this note, we prove that the Witten genus of nonsingular stringy complete intersections in product of complex projective spaces vanishes.

متن کامل

The Genus 0 Gromov-Witten Invariants of Projective Complete Intersections

We describe the structure of mirror formulas for genus 0 Gromov-Witten invariants of projective complete intersections with any number of marked points and provide an explicit algorithm for obtaining the relevant structure coefficients. As an application, we give explicit closed formulas for the genus 0 Gromov-Witten invariants of Calabi-Yau complete intersections with 3 and 4 constraints. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007